UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS
General Certificate of Education
Advanced Subsidiary Level and Advanced Level

CENTRE NUMBER

CANDIDATE NUMBER

CHEMISTRY

9701/34
Advanced Practical Skills 2
October/November 2013
2 hours
Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
Use of a Data Booklet is unnecessary.
Qualitative Analysis Notes are printed on pages 10 and 11.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

Session
Laboratory

For Examiner's Use	
1	
2	
3	
Total	

This document consists of $\mathbf{1 1}$ printed pages and $\mathbf{1}$ blank page.

1 FB 1 is $0.125 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid， HCl ．
FB 2 is an aqueous solution containing sodium hydroxide， NaOH ，and sodium carbonate， $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ． bromophenol blue acid－base indicator

By carrying out titrations，you are to determine the percentage by mass of sodium carbonate in the mixture of sodium hydroxide and sodium carbonate in solution FB 2.

（a）Titration

－Fill a burette with FB 1.
－Pipette $25.0 \mathrm{~cm}^{3}$ of FB 2 into a conical flask．
－Add a few drops of bromophenol blue indicator．
－Titrate the mixture in the flask with FB 1 until the blue－violet colour of the solution changes to yellow．
－Perform a rough titration and record your burette readings in the space below．

The rough titre is \qquad cm^{3} ．
－Carry out as many accurate titrations as you think necessary to obtain consistent results．
－Make certain any recorded results show the precision of your practical work．
－Record in a suitable form below all of your burette readings and the volume of FB 1 added in each accurate titration．
（b）From your accurate titration results，obtain a suitable value to be used in your calculations． Show clearly how you have obtained this value．
\qquad

(c) Calculations

When the titrations were repeated using phenolphthalein as the indicator, $25.0 \mathrm{~cm}^{3}$ of FB 2 required $23.25 \mathrm{~cm}^{3}$ of FB 1.

The following explains why different results are obtained using two different indicators.

- When phenolphthalein is used as the indicator, the following reactions have taken place at the end-point of the titration.

1. $\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
2. $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{NaHCO}_{3}(\mathrm{aq})$

- When bromophenol blue is used as the indicator in (a), the following reactions have taken place at the end-point of the titration.

1. $\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
2. $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{NaHCO}_{3}(\mathrm{aq})$
3. $\mathrm{NaHCO}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Show your working and use appropriate significant figures in the final answer to all steps of your calculations.
(i) Calculate the number of moles of hydrochloric acid in the volume of FB 1 calculated in (b).
\qquad mol
(ii) Calculate the number of moles of hydrochloric acid in $23.25 \mathrm{~cm}^{3}$ of FB 1.
moles of HCl in $23.25 \mathrm{~cm}^{3}=$ \qquad mol
(iii) Use the following formula to calculate the number of moles of hydrochloric acid that react with the $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the titration using phenolphthalein indicator.

$$
\text { moles } \mathrm{HCl}=\text { answer (i) - answer (ii) = }
$$

\qquad mol
(iv) Use your answer to (iii) to calculate the mass of sodium carbonate present in $25.0 \mathrm{~cm}^{3}$ of FB 2.
[$\left.A_{\mathrm{r}}: \mathrm{C}, 12.0 ; \mathrm{O}, 16.0 ; \mathrm{Na}, 23.0\right]$

$$
\text { mass of } \mathrm{Na}_{2} \mathrm{CO}_{3} \text { in } 25.0 \mathrm{~cm}^{3} \text { FB } 2=
$$

\qquad g
(v) The overall equation for the reaction of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ with HCl when bromophenol blue is used as indicator is given below.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Calculate the number of moles of HCl that reacted with the $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the above equation in $25.0 \mathrm{~cm}^{3}$ of $\mathbf{F B} 2$.

$$
\text { moles of } \mathrm{HCl}=
$$

\qquad mol

(vi) Use your answers to (i) and (v) to calculate the mass of sodium hydroxide in $25.0 \mathrm{~cm}^{3}$ of FB 2.
[$\left.A_{\mathrm{r}}: \mathrm{H}, 1.0 ; \mathrm{O}, 16.0 ; \mathrm{Na}, 23.0\right]$

$$
\text { mass of } \mathrm{NaOH}=
$$

\qquad g
(vii) Calculate the percentage by mass of sodium carbonate in the mixture of sodium hydroxide and sodium carbonate in FB 2.

FB 2 contains \qquad $\%$ by mass $\mathrm{Na}_{2} \mathrm{CO}_{3}$

2 The percentage by mass of sodium carbonate in a mixture with sodium chloride can be estimated by adding a weighed sample of the mixture to a weighed excess of hydrochloric acid and measuring the mass of carbon dioxide evolved.
Sodium chloride does not react with hydrochloric acid.
FB 3 is $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, HCl .
FB 4 is a mixture of solid sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and solid sodium chloride, NaCl .
You are to determine the mass of carbon dioxide given off when the sodium carbonate in the mixture, FB 4, reacts with excess hydrochloric acid.

(a) Method

Record all weighings, in an appropriate form, in the space below.

- Use the measuring cylinder to transfer $75 \mathrm{~cm}^{3}$ of FB 3 into a $250 \mathrm{~cm}^{3}$ conical flask.
- Weigh the flask and acid, and record the mass.
- Weigh the labelled tube containing FB 4 and record the mass.
- Tip the FB 4 into the acid in the flask, a little at a time.
- When the reaction slows down, swirl the flask for 2 to 3 minutes. Reweigh the flask and its contents, and record the mass.
- Reweigh the tube labelled FB 4 with its stopper and any residual mixture not added to the acid, and record the mass.
- Calculate the mass of the mixture, FB 4, added to the acid.
- Record the mass of carbon dioxide given off in the reaction. This may be calculated using the following formula.
mass of $\mathrm{CO}_{2}=($ mass of flask + acid $)+($ mass FB 4 added $)-($ final mass of flask + contents $)$
(b) The reaction of sodium carbonate with hydrochloric acid is shown in the equation.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

(i) Calculate the mass of sodium carbonate that reacts with the hydrochloric acid to give the mass of carbon dioxide recorded in (a).
[$A_{\mathrm{r}}: \mathrm{C}, 12.0 ; \mathrm{O}, 16.0 ; \mathrm{Na}, 23.0$]

$$
\begin{equation*}
\text { mass of } \mathrm{Na}_{2} \mathrm{CO}_{3}= \tag{g}
\end{equation*}
$$

(ii) Calculate the percentage by mass of sodium carbonate in FB 4.

FB 4 contains $\%$ by mass $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(c) Mixtures of solids containing sodium carbonate can be analysed either by the procedure you used in Question 1 or the procedure you used in Question 2.

The procedure used in Question 2 is likely to give a less accurate value for the percentage of sodium carbonate.
(i) Suggest a significant source of error in the experimental method used in Question 2.
\qquad
\qquad
(ii) State whether the error identified above would increase or decrease the calculated percentage by mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the mixture. Explain your answer.
\qquad
\qquad
\qquad
(iii) Suggest an improvement to the experimental method or apparatus used in Question 2 that would reduce the error given in (i).
\qquad
\qquad

3 Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, described in the appropriate place in your observations.

You should indicate clearly at what stage in a test a change occurs. Marks are not given for chemical equations.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test, the name or correct formula of the

 element or compound must be given.(a) You are provided with two solids in boiling tubes labelled FB 5 and FB 6. Each solid contains one cation and one anion from those listed on pages 10 and 11.
(i) Add dilute nitric acid slowly to each boiling tube until the tube is approximately one third full. Record your observations in the space below. Keep these solutions for use in (a)(ii).
(ii) Use the solutions from (i) in the following tests.

test	observations	
	solution from FB 5	solution from FB 6
To a 1 cm depth of solution in a test-tube add aqueous sodium hydroxide, then		
add excess aqueous sodium hydroxide.		
To a 1 cm depth of solution in a test-tube add aqueous ammonia, then		
add excess aqueous ammonia.		

(iii) From your observations, identify the cations present.

FB 5 contains

FB 6 contains \qquad
(iv) From your observations, what conclusions can be made about the anions present in FB 5 and FB 6? Explain your reasoning.
\qquad
\qquad
\qquad
\qquad
(b) (i) Dissolve half of the solid FB 7 provided in a 4 cm depth of water in a boiling tube. Carry out the following tests and complete the table.

test	observations	deductions about FB 7
To a 2 cm depth of the solution of FB 7 in a test-tube, add a 2 cm length of magnesium ribbon.		
To a 2 cm depth of the solution of FB 7 in a boiling tube, add a 1 cm depth of dilute sulfuric acid. Warm the solution and add five drops of aqueous potassium manganate(VII).		

(ii) Tip the remaining solid FB 7 into a hard-glass test-tube. Heat the solid strongly and observe any changes. Do not test any gases given off. Record your observations in the space below.
(iii) Suggest a further deduction you can make about FB 7 from your observations in (ii).
\qquad
\qquad
[Total: 15]

Qualitative Analysis Notes

Key: [ppt. $=$ precipitate]

1 Reactions of aqueous cations

ion	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{A} \mathrm{l}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	no ppt. (if reagents are pure)	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\left.\mathrm{Ca}^{2+}(\mathrm{aq})\right]$	no ppt.
chromium(III), $\mathrm{Cr}^{3+}(\mathrm{aq})$	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
$\begin{aligned} & \text { lead(II), } \\ & \mathrm{Pb}^{2+}(\mathrm{aq}) \end{aligned}$	white ppt. soluble in excess	white ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]

2 Reactions of anions

ion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chromate(VI), $\mathrm{CrO}_{4}{ }^{2-(\mathrm{aq})}$	yellow solution turns orange with $\mathrm{H}^{+}(\mathrm{aq})$; gives yellow ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$; gives bright yellow ppt. with $\mathrm{Pb}^{2+}(\mathrm{aq})$
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$); gives white ppt. with $\mathrm{Pb}^{2+}(\mathrm{aq})$
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$); gives white ppt. with $\mathrm{Pb}^{2+}(\mathrm{aq})$
iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$); gives yellow ppt. with $\mathrm{Pb}^{2+}(\mathrm{aq})$
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; NO liberated by dilute acids (colourless $\mathrm{NO} \rightarrow$ (pale) brown NO_{2} in air)
sulfate, $\mathrm{SO}_{4}{ }^{2-(\mathrm{aq})}$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ or with $\mathrm{Pb}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$	SO_{2} liberated with dilute acids; gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	"pops" with a lighted splint
oxygen, O_{2}	relights a glowing splint
sulfur dioxide, SO_{2}	turns acidified aqueous potassium dichromate(VI) from orange to green

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

